TECHNISCHE UNIVERSITÄT BERLIN Efficient integration of matrix-valued non-stiff DAEs by half-explicit methods

نویسندگان

  • Vu Hoang
  • Linh Volker Mehrmann
  • Vu Hoang Linh
  • Volker Mehrmann
چکیده

Numerical integration methods for nonlinear differential-algebraic equations (DAEs) in strangeness-free form are studied. In particular, half-explicit methods based on popular explicit methods like one-leg methods, linear multi-step methods, and Runge-Kutta methods are proposed and analyzed. Compared with well-known implicit methods for DAEs, these half-explicit methods demonstrate their efficiency particularly for a special class of semilinear matrix DAEs which arise in the numerical computation of spectral intervals for DAEs. Numerical experiments illustrate the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technische Universität Berlin Institut für Mathematik Regularization and Numerical Simulation of Dynamical Systems Modeled with Modelica

Quasi-linear differential-algebraic equations (DAEs) are essential tools for modeling dynamical processes, e.g. for mechanical systems, electrical circuits or chemical reactions. These models are in general of higher index and contain so called hidden constraints which lead to instabilities and order reductions during numerical integration of the model equations. In this article we consider dyn...

متن کامل

TECHNISCHE UNIVERSITÄT BERLIN Regularization of Constrained PDEs of Semi-Explicit Structure

A general framework for the regularization of constrained PDEs, also called operator DAEs, is presented. The given procedure works for semi-explicit operator DAEs of first order which includes the Navier-Stokes and other flow equations. This reformulation is a regularization in the sense that a semi-discretization in space leads to a DAE of lower index, i.e., of differentiation index 1 instead ...

متن کامل

TECHNISCHE UNIVERSITÄT BERLIN A Combined Structural-Algebraic Approach for the Regularization of Coupled Systems of DAEs

The automated modeling of multi-physical dynamical systems is usually realized by coupling different subsystems together via certain interface or coupling conditions. This approach results in large-scale high-index differential-algebraic equations (DAEs). Since the direct numerical simulation of these kind of systems leads to instabilities and possibly non-convergence of the numerical methods a...

متن کامل

TECHNISCHE UNIVERSITÄT BERLIN Regularization of linear and nonlinear descriptor systems

Differential-algebraic equations (DAEs) present today the state-of-the-art in dynamical systems arising from automated modularized modeling in almost all areas of science and engineering. While the modeling becomes more and more convenient, the resulting models are typically not easy to treat with current numerical simulation, control and optimization methods. In many cases a reformulation of t...

متن کامل

TECHNISCHE UNIVERSITÄT BERLIN Spectra and leading directions for differential-algebraic equations

The state of the art in the spectral theory of linear time-varying differential-algebraic equations (DAEs) is surveyed. To characterize the asymptotic behavior and the growth rate of solutions, basic spectral notions such as Lyapunovand Bohl exponents, and Sacker-Sell spectra are discussed. For DAEs in strangeness-free form, the results extend those for ordinary differential equations, but only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011